真的是隔很久….藉口就不多說了 OuO

這篇主要在造輪子,主要原因就是幾乎找不到這類輪子了,而剛好自己需要,又卡了很久才完成,不如記錄一下 OuO

前言

最近在做 TVM 相關的事,它支援頗多前端,基於方便我就隨便挑一個 Keras 了 (先說我不會 AI @@
然後因為現在頗多都在做 ImageNet 或更之後的應用,MNIST 的資料反而偏少,尤其是幾乎找不到訓練好的模型,說幾乎是因為還真的被我找到,傳送門: EN10/KerasMNIST,如果只是要用 Keras 來操作 MNIST 的話可以用這個連結,我已經確認過是可以直接執行XDD


2019.06.17 更新:扯,原來官網就有….https://keras.io/examples/mnist_cnn/
然後我發現我整篇都把 MNIST 打成 MINST….


話說原本以為模型被存成檔案的話只有權重,結果是有兩種,也可以跟整個模型存在一起,詳情就去 Keras 官網 How can I save a Keras model? 看看吧。

所以上面那個做 MNIST 的是把整個模型存起來,這主要不是我要的@@,不過還是先用看看。

P.S. 一些相依性檔案例如 Keras, Tensorflow, TVM 的安裝就不一一記錄囉 OuO

環境

  • ubuntu 18.04
  • TVM 0.6.dev (6a4d71ff40915611bd42b62994992b879e6be610)

一堆程式碼上菜囉

原始 cnnPredict.py

注意要下載或複製那個程式碼,cnn.h5test3.png 一樣要放對位置。

from scipy.misc import imread, imresize
import numpy as np
x = imread('test3.png',mode='L')
# Compute a bit-wise inversion so black becomes white and vice versa
x = np.invert(x)
# Make it the right size
x = imresize(x,(28,28))
# Convert to a 4D tensor to feed into our model
x = x.reshape(1,28,28,1)
x = x.astype('float32')
x /= 255

# Perform the prediction
from keras.models import load_model
model = load_model('cnn.h5')
out = model.predict(x)
print(np.argmax(out))

很好,可以執行~

$ python3 cnnPredict.py
3

加入 TVM 囉

import nnvm
import tvm
import tvm.relay as relay
from scipy.misc import imread, imresize
import numpy as np
import keras
from keras.models import load_model

x = imread('test3.png',mode='L')
# Compute a bit-wise inversion so black becomes white and vice versa
x = np.invert(x)
# Make it the right size
x = imresize(x,(28,28))
# Convert to a 4D tensor to feed into our model
x = x.reshape(1,28,28,1)
x = x.astype('float32')
x /= 255

# Load model from pre-trained file
model = load_model('cnn.h5')

# Compile with tvm
shape_dict = {'input_1': (1, 1, 28, 28)}
func, params = relay.frontend.from_keras(model, shape_dict)
target = "llvm"
ctx = tvm.cpu(0)
with relay.build_config(opt_level=3):
    executor = relay.build_module.create_executor('graph', func, ctx, target)

# Perform the prediction
dtype = 'float32'
tvm_out = executor.evaluate(func)(tvm.nd.array(x.astype(dtype)), **params)
print(np.argmax(tvm_out.asnumpy()[0]))
$ python3 cnnPredict_tvm.py
In `main`: 
v0.0.1
fn (%conv2d_1_input, %v_param_1: Tensor[(32, 1, 3, 3), float32], %v_param_2: Tensor[(32,), float32], %v_param_3: Tensor[(64, 32, 3, 3), float32], %v_param_4: Tensor[(64,), float32], %v_param_5: Tensor[(128, 9216), float32], %v_param_6: Tensor[(128,), float32], %v_param_7: Tensor[(10, 128), float32], %v_param_8: Tensor[(10,), float32]) {
  %0 = nn.conv2d(%conv2d_1_input, %v_param_1, channels=32, kernel_size=[3, 3])
  %1 = nn.bias_add(%0, %v_param_2)
  %2 = nn.relu(%1)
  %3 = nn.conv2d(%2, %v_param_3, channels=64, kernel_size=[3, 3])
  %4 = nn.bias_add(%3, %v_param_4)
  %5 = nn.relu(%4)
  %6 = nn.max_pool2d(%5, pool_size=[2, 2], strides=[2, 2])an internal invariant was violated while typechecking your program [22:05:21] tvm/src/relay/op/nn/pooling.cc:73: Check failed: data != nullptr: 
; 
  %7 = transpose(%6, axes=[0, 2, 3, 1])
  %8 = nn.batch_flatten(%7)
  %9 = nn.dense(%8, %v_param_5, units=128)
  %10 = nn.bias_add(%9, %v_param_6)
  %11 = nn.relu(%10)
  %12 = nn.dense(%11, %v_param_7, units=10)
  %13 = nn.bias_add(%12, %v_param_8)
  nn.softmax(%13, axis=1)
}

扯,竟然不行@@,而且完全不知道錯哪,找了一些資料說是 shape 錯了,我試了各種排列組合也都不行….

只存 MNIST 的權重

只好使用上面提到 Keras 官網 How can I save a Keras model? 的方式只存權重出來,這裡我們只需要改最後一行,save 改成 save_weights

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save_weights('mnist_weights.h5')

跑了頗久,不過跟其應該比 ImageNet 快很多了。結果如下圖。

train a MNIST model with Keras

train a MNIST model with Keras

OuO

自己用 Keras 建構一個 MNIST 再餵給 TVM

把上面產生的權重餵給自己建構的模型

import nnvm
import tvm
import tvm.relay as relay
from scipy.misc import imread, imresize
import numpy as np
import keras
from keras.models import load_model
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, InputLayer
from keras.layers import Conv2D, MaxPooling2D
num_classes = 10

x = imread('test3.png',mode='L')
# Compute a bit-wise inversion so black becomes white and vice versa
x = np.invert(x)
# Make it the right size
x = imresize(x,(28,28))
# Convert to a 4D tensor to feed into our model
x = x.reshape(1,28,28,1)
x = x.astype('float32')
x /= 255

# Construct a MNIST model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

# Load the weights that we get from last program
model.load_weights('mnist_weights.h5')

shape_dict = {'input_1': (1, 1, 28, 28)}
func, params = relay.frontend.from_keras(model, shape_dict)
target = "llvm"
ctx = tvm.cpu(0)
with relay.build_config(opt_level=3):
    executor = relay.build_module.create_executor('graph', func, ctx, target)

# Perform the prediction
dtype = 'float32'
tvm_out = executor.evaluate(func)(tvm.nd.array(x.astype(dtype)), **params)
print(np.argmax(tvm_out.asnumpy()[0]))
$ python3 cnnPredict_tvm.py
In `main`: 
v0.0.1
fn (%conv2d_1_input, %v_param_1: Tensor[(32, 1, 3, 3), float32], %v_param_2: Tensor[(32,), float32], %v_param_3: Tensor[(64, 32, 3, 3), float32], %v_param_4: Tensor[(64,), float32], %v_param_5: Tensor[(128, 9216), float32], %v_param_6: Tensor[(128,), float32], %v_param_7: Tensor[(10, 128), float32], %v_param_8: Tensor[(10,), float32]) {
  %0 = nn.conv2d(%conv2d_1_input, %v_param_1, channels=32, kernel_size=[3, 3])
  %1 = nn.bias_add(%0, %v_param_2)
  %2 = nn.relu(%1)
  %3 = nn.conv2d(%2, %v_param_3, channels=64, kernel_size=[3, 3])
  %4 = nn.bias_add(%3, %v_param_4)
  %5 = nn.relu(%4)
  %6 = nn.max_pool2d(%5, pool_size=[2, 2], strides=[2, 2])an internal invariant was violated while typechecking your program [22:21:27] tvm/src/relay/op/nn/pooling.cc:73: Check failed: data != nullptr: 
; 
  %7 = transpose(%6, axes=[0, 2, 3, 1])
  %8 = nn.batch_flatten(%7)
  %9 = nn.dense(%8, %v_param_5, units=128)
  %10 = nn.bias_add(%9, %v_param_6)
  %11 = nn.relu(%10)
  %12 = nn.dense(%11, %v_param_7, units=10)
  %13 = nn.bias_add(%12, %v_param_8)
  nn.softmax(%13, axis=1)
}

扯,結果竟然一模一樣。

檢驗剛剛建立的模型是否正確

總之先試試看是不是跟直接讀 cnn.h5 一樣。

import nnvm
import tvm
import tvm.relay as relay
from scipy.misc import imread, imresize
import numpy as np
import keras
from keras.models import load_model
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, InputLayer
from keras.layers import Conv2D, MaxPooling2D
num_classes = 10

x = imread('test3.png',mode='L')
# Compute a bit-wise inversion so black becomes white and vice versa
x = np.invert(x)
# Make it the right size
x = imresize(x,(28,28))
# Convert to a 4D tensor to feed into our model
x = x.reshape(1,28,28,1)
x = x.astype('float32')
x /= 255

# Construct a MNIST model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

# Load the weights that we get from last program
model.load_weights('mnist_weights.h5')

# Perform the prediction
out = model.predict(x)
print(np.argmax(out))

很好,是一樣….

$ python3 cnnPredict.py
3

突破,加個輸入層?

在找解決方式的過程中突然看到 這裡提到有 InputLayer,不如加看看。

import nnvm
import tvm
import tvm.relay as relay
from scipy.misc import imread, imresize
import numpy as np
import keras
from keras.models import load_model
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, InputLayer
from keras.layers import Conv2D, MaxPooling2D
num_classes = 10
input_shape = (28, 28, 1)

x = imread('test3.png',mode='L')
# Compute a bit-wise inversion so black becomes white and vice versa
x = np.invert(x)
# Make it the right size
x = imresize(x,(28,28))
# Convert to a 4D tensor to feed into our model
x = x.reshape(1,28,28,1)
x = x.astype('float32')
x /= 255

# model = load_model('cnn.h5')
# Construct a MNIST model
model = Sequential()
model.add(InputLayer(input_shape=input_shape))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

# Load the weights that we get from last program
model.load_weights('mnist_weights.h5')

shape_dict = {'input_1': (1, 1, 28, 28)}
func, params = relay.frontend.from_keras(model, shape_dict)
target = "llvm"
ctx = tvm.cpu(0)
with relay.build_config(opt_level=3):
    executor = relay.build_module.create_executor('graph', func, ctx, target)

# Pperform the prediction
dtype = 'float32'
tvm_out = executor.evaluate(func)(tvm.nd.array(x.astype(dtype)), **params)
print(np.argmax(tvm_out.asnumpy()[0]))
$ python3 test_mnist.py
3

扯,竟然過了 QuQ

其他

lutzroeder/netron

發現了一個視覺化工具可以看模型。

NETRON

NETRON

OuO

想看中間的 shape 的話

for layer in model.layers:
    print(layer.input_shape)
    print(layer.input)
    print(layer.output_shape)
    print(layer.output)
    print("---")
  • ⊛ Back to top
  • ⊛ Go to bottom